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Abstract: We propose a maximum-likelihood method to optimize multilayer neural
networks in the framework of statistical decision-making. The method is based on ap-
proximating unknown probability distributions by finite mixtures and transforming va-
riables between consecutive layers without information loss. Both the parameters and
the structure of neural networks can be optimized simultaneously by means of EM al-
gorithm. The structural optimization actually follows from a special subspace approach
which computes statistically correct a posteriori probabilities on different subspaces. At
a very general level the coordinate functions of the transform can be interpreted in terms
of functional properties of neurons. In this sense the proposed method could be helpful
to better understanding of biological neural systems.
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1 Introduction

Speaking about probabilistic neural networks, we refer to several papers based on ap-
proximation of probability density functions by finite mixtures in the framework of
statistical decision-making (cf. Specht, 1988; Haykin, 1993; Xu & Jordan, 1993, 1996;
Palm, 1994; Watanabe & Fukumizu, 1995; Streit & Luginbuhl, 1994; Bishop 1995; Grim,
1996, 1996a).

Unlike usual approaches the class-conditional densities are approximated by finite
mixtures with components from a common pool of probability density functions. Thus
the component density functions corresponding to neurons may be shared by all class-
conditional mixtures without any structural limitations. The resulting probabilistic mo-
del can be interpreted as a three-layer feedforward neural network with the first layer of
input variables, the second “hidden” layer of shared component densities and the third

0Supported by the Grant of the Academy of Sciences No. A2075703, by the Grant of the Grant
Agency of CR, No. 402/97/1242, by the Grant of the Ministry of Education No. VS 96063 and partially
by the Complex research project of the Academy of Sciences No. K1075601 of the Czech Republic.
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layer of a posteriori probabilities of classes. The shared components naturally define
an additional “descriptive” decision problem which can be estimated by EM algorithm
in unsupervised way. The descriptive classes may correspond e.g. to some elementary
situations on input.

A weak point of the probabilistic neural networks is the tacitly assumed complete
interconnection of component densities with all input variables (or neurons of the prece-
ding layer). This property follows from the fundamental fact that all component densities
of a mixture must be defined on the same space and therefore they have to depend on
the same set of variables. Thus the complete interconnection property of probabilistic
neural networks arises from the very basic paradigma of probabilistic description. On the
other hand, such a structural “rigidity” is unnatural from the point of view of biological
neural systems.

In the present paper we suggest a new approach to structural optimization of the pro-
babilistic neural networks by means of maximum-likelihood criterion - without leaving
the exact framework of probability theory. The method makes use of an idea originally
designed for multivariate pattern recognition (cf. Grim, 1986). It is based on finite mix-
tures with factorizable components including binary structural parameters. By means of
a special “background” substitution technique the computation of statistically correct a
posteriori probabilities can be reduced to different subspaces and, for the same reason,
the receptive fields of corresponding neurons can be confined to arbitrary subsets of
input variables.

In literature there is a similarly motivated subspace approach based on projecting
input data vectors into class-specific subspaces. It appears that the original idea of
Watanabe (1967) has been generalized to mixtures of subspaces (cf. e.g. Kohonen et
al., 1979; Hinton et al., 1995 and others) and implemented by neural networks (cf.
e.g. Oja, 1983; Oja & Kohonen, 1988 and others). Subspace-projection methods are
computationally feasible, but they do not provide statistically correct decision models.

The concept of descriptive decision problem suggests theoretically well justified possi-
bility for a sequential design of multilayer structures. We make use of the fact (cf. Grim,
1996a, Vajda & Grim, 1996) that the Shannon information about the descriptive deci-
sion problem is automatically preserved by a special class of transforms defined in terms
of a posteriori probabilities. The optimization procedure starting with unsupervised esti-
mation of the distribution mixture and including information preserving transformation
of the descriptive decision problem can be applied repeatedly to optimize multilayer neu-
ral networks. Only the estimation of class-conditional component weights at the highest
level has to be supervised.

The information preserving transform can be well interpreted in terms of functional
properties of neurons. Particularly, by expanding the components of the transform, we
obtain terms responsible for spontaneous activity of neurons, for contributions from
synapses of other neurons and for lateral inhibition. The properties of the formally
deduced synaptic weights justify the classical Hebb’s postulate of learning.
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2 Method of Mixtures

First we recall briefly solution of a statistical decision problem {X , P (·|ω)p(ω), ω ∈ Ω}
based on approximating class-conditional probability distributions by finite mixtures.
Let Ω = {ω1, ω2, . . . , ωK} be a finite set of classes with a priori probabilities p(ω) and
P (x|ω) be the corresponding class-conditional probability density functions on a real
space X = RN . All statistical information about the set of classes Ω given some ob-
servation x = (x1, x2, . . . , xN) ∈ X is expressed by the Bayes formula for a posteriori
probabilities

p(ω|x) =
P (x|ω)p(ω)

P (x)
, ω ∈ Ω (1)

where
P (x) =

∑

ω∈Ω

P (x|ω)p(ω) (2)

is the unconditional joint probability density of x. The posterior distribution p(ω|x)
may further be used to define the final decision.

We assume that the conditional densities P (x|ω) can be approximated by finite
mixtures. However, unlike usual approaches, we use component densities from a common
pool (cf. Bishop, 1995; Grim, 1996). In particular, we assume that there is a finite set
F = {F (·|m), m ∈M} of probability density functions on X such that each conditional
density P (x|ω) may be expressed as a convex combination of densities from F

P (x|ω) =
∑

m∈M
F (x|m)f(m|ω), ω ∈ Ω, x ∈ X , M = {1, . . . , M}. (3)

Here f(m|ω) ≥ 0 are some conditional probabilistic weights and the components F (x|m)
may be shared by all class-conditional densities P (x|ω).

The statistical model (1) - (3) can be interpreted as a three-layer feed-forward neural
network: the first layer is represented by the input variables x1, x2, . . . , xN , the shared
component densities F (x|m) represent the second “hidden” layer of neurons and the
third layer corresponds to the a posteriori probabilities p(ω|x) of classes.

As it can be seen the concept of shared components avoids structural limitations at
the final level of statistical decision-making. Similar schemes have also been proposed
for radial basis functions (RBF) neural networks (cf. Jacobs & Jordan, 1991; Haykin,
1993). However, instead of usual multivariate interpolation or approximation of output
variables (cf. e.g. Poggio & Girosi, 1990; Powel, 1992), the purpose of RBF’s in the
probabilistic framework is to model the components of the underlying statistical decision
problem.

By using substitution (3) we can rewrite the joint density P (x) in the form

P (x) =
∑

m∈M
F (x|m)f(m), x ∈ X (4)

where
f(m) =

∑

ω∈Ω

f(m|ω)p(ω). (5)
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The set of shared component densities F (x|m) naturally introduces an additional de-
scriptive decision problem {X , F (·|m)f(m),m ∈ M} with a priori probabilities f(m)
whereby each component in the mixture (4) may correspond e.g. to an elementary si-
tuation on the input. Given an observation x ∈ X , the a posteriori probabilities

f(m|x) =
F (x|m)f(m)

P (x)
, m ∈M, x ∈ X (6)

may be interpreted as a measure of presence of different elementary situations. Simul-
taneously, there is a simple relation between a posteriori probabilities of classes and of
the elementary situations (cf. (1), (3))

p(ω|x) =
∑

m∈M
p(ω|m)f(m|x), p(ω|m) =

f(m|ω)p(ω)

f(m)
, ω ∈ Ω, x ∈ X . (7)

Let us remark in this connection that in Sec.7 the output variable of the m-th neuron
is defined as log f(m|x) to make the corresponding transform information preserving.
Also the subspace approach of Sec.4 makes use of the fact that the computation of the
a posteriori probabilities f(m|x) can be confined to different subspaces. It is therefore
rather important that the final solution p(ω|x) of the original decision problem can be
expressed in the form of a linear combination of the a posteriori probabilities f(m|x).

Let us recall that, here and in the following we consider continuous variables charac-
terized by probability density functions. However, most of the results of Sec.3–7 apply
to discrete distributions as well.

It should also be emphasized that, by introducing the concept of shared components
in Eq. (3), we make an implicit assumption

F (·|m,ω) = F (·|m), for all ω ∈ Ω, m ∈M. (8)

In terms of Shannon information this assumption implies (cf. Grim, 1996)

I(X ,M× Ω) = I(X ,M), I(X , Ω) ≤ I(X ,M). (9)

The inequalities (9) clarify the meaning of the descriptive decision problem since, as
the decision information I(X , Ω) is bounded by the “descriptive” information I(X ,M),
possible information loss caused by inaccurately estimated components F (x|m) may
become irreparable.

3 Hybrid Estimation Scheme

Numerically the finite mixture model of Sec.2 can be optimized by means of EM algori-
thm (cf. Grim, 1982, 1996). In view of the importance of this remarkable computational
scheme in the following we recall that, as it appears, the first proof of its monotonous
convergence is due to Schlesinger (1968). The result of Schlesinger has been further
discussed in a textbook of Ajvazjan et al. (1974) and in a survey paper of Isaenko &
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Urbakh (1976). At present the standard reference is the apparently independent paper
of Dempster et al. (1977) who introduced the name EM algorithm and demonstrated
its applicability in different fields.

Suppose now that for each ω ∈ Ω there is a nonempty set Sω of independent observati-
ons identically distributed according to some unknown probability density P (x|ω):

Sω = {x(ω)
1 , . . . , x

(ω)
Kω
}, x

(ω)
k ∈ X , S =

⋃

ω∈Ω

Sω.

Let us note first that we can estimate the component densities F (x|m) in unsupervised
way, irrespectively of the classes ω ∈ Ω, by maximizing the log-likelihood function

L =
1

|S|
∑

x∈S
log[

∑

m∈M
F (x|m)f(m)], (10)

where |S| denotes the number of elements in the set S. The m.- l. estimates of parameters
can be computed by the iterative equations of EM algorithm (cf. Grim, 1982, 1996):

E-step: (m ∈M, x ∈ S, t = 0, 1, . . .)

q(t)(m|x) =
F (t)(x|m)f (t)(m)∑
j∈M F (t)(x|j)f (t)(j)

, (11)

M-step: (m ∈M)

f (t+1)(m) =
1

|S|
∑

x∈S
q(t)(m|x), (12)

F (t+1)(·|m) = arg max
F (·|m)

{ 1

|S|
∑

x∈S
q(t)(m|x) log F (x|m)}. (13)

The last implicit equation can be expressed in a closed form in most cases of practical
importance (cf. e.g. Grim, 1996).

Having obtained the unsupervised estimates of the components F (x|m) we may
confine the supervised estimation to the conditional weights f(m|ω) (≈ hybrid scheme)
by using the global log-likelihood function (cf. Grim, 1996)

LG =
1

|S|
∑

ω∈Ω

∑

x∈Sω

log [P (x|ω)p(ω)]. (14)

Making substitution (3) and setting p(ω) = |Sω|/|S| we obtain the criterion

L̄G =
1

|S|
∑

ω∈Ω

∑

x∈Sω

log [
∑

m∈M
F (x|m)f(m|ω)] (15)

and the corresponding iteration equations:

E-step: (m ∈M, x ∈ S, ω ∈ Ω, t = 0, 1, . . .)

q(t)(m|x, ω) =
F (t)(x|m)f (t)(m|ω)∑
j∈M F (t)(x|j)f (t)(j|ω)

, (16)
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M-step: (m ∈M, ω ∈ Ω)

f (t+1)(m|ω) =
1

|Sω|
∑

x∈Sω

q(t)(m|x, ω), (17)

However, the component densities F (x|m) can be included into the supervised esti-
mation by means of Eq.

F (t+1)(·|m) = arg max
F (·|m)

{ 1

|S|
∑

ω∈Ω

∑

x∈Sω

q(t)(m|x, ω) log F (x|m)}. (18)

Thus, to optimize the component densities F (x|m), we can use two obviously different
iteration schemes, the unsupervised (11) - (13) and the supervised one (16) - (18). The
two schemes may coincide only asymptotically, provided that the concept of shared
components is applicable and all the mixtures are uniquely identifiable.

This fact could be of practical importance since, in a particular case, the supervised
estimates of components could yield higher classification accuracy and, on the other
hand, the unsupervised scheme could be less sensitive to small data sets.

In the present paper we prefer the “hybrid” estimation procedure (16) - (17) based
on unsupervised estimates of the component densities F (x|m) because, as it will be
shown in Sec.7, it is suitable for a sequential design of multilayer networks by means of
information preserving transforms.

4 Subspace Approach

Let us recall that one of the most natural features of neural networks is the possibility to
connect any particular neuron with nearly arbitrary subset of input variables. Unfortu-
nately, in probabilistic neural networks this simple possibility is usually not compatible
with a statistically correct decision-making. If we assume that each layer of a neural ne-
twork is described by a mixture of component densities corresponding to neurons, then
all the components must be defined on the same input space to satisfy formal properties
of probability density functions. Thus, all neurons must be connected with all input
variables and, in this sense, the complete interconnection is a direct consequence of the
probabilistic description.

The problem has a counterpart in pattern recognition. It is well known that in high
dimensional spaces feature selection methods may appear too restrictive or inefficient
if for individual classes the subsets of informative variables (features) are essentially
different. Thus e.g. we would use different subsets of binary rastr fields to estimate con-
ditional distributions of handwritten digits properly and economically. However, instead
of class-specific subspaces, we have to use one and the same input subspace (possibly of a
high dimension) to compute desirable a posteriori probabilities of classes since otherwise
the underlying statistical model would be incorrect.
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In the following sections we shall suppose that the conditional probability density
functions F (·|m) ∈ F are factorizable, i.e. that we can write

F (x|m) =
∏

n∈N
fn(xn|m), x ∈ X (19)

where N = {1, 2, . . . , N} is the index set and fn(xn|m) are univariate conditional densi-
ties. It can be seen that, from the theoretical point of view, this assumption is not
restrictive. In discrete case, the class of finite mixtures

P (x) =
∑

m∈M
f(m)

∏

n∈N
fn(xn|m), x ∈ X , (20)

is complete in the sense that any discrete probability distribution on X can be expressed
in the form (20), for M sufficiently large (Grim, 1996). In case of continuous variables
we may refer to similar asymptotic properties of nonparametric (kernel type) density
estimates (see e.g. Parzen, 1962).

It can be seen that, by Eq. (20), the variables x1, x2, . . . , xN are conditionally inde-
pendent with respect to the index variable m. In practical problems the conditionally
independent model (20) may become less efficient e.g. in case of ’elongated clusters’ of
real data vectors with highly correlated components. On the other hand, we have good
experience with the conditionally independent models of discrete data. Let us recall also
that the distribution mixture (20) is closely related to the concept of latent classes intro-
duced by Lazarsfeld (1966) for binary variables. In the present paper the most important
argument for the conditionally independent model (20) is the possibility to avoid the
necessity of fully interconnected units in probabilistic neural networks - without leaving
the exact probabilistic framework.

The structural approach to probabilistic neural networks makes use of an idea origi-
nally designed for multivariate statistical pattern recognition (cf. Grim, 1986). By means
of a special “background” substitution technique the computation of a posteriori pro-
babilities f(m|x) may be reduced to subsets of informative variables and, in this way,
we can optimize both the structure and parameters of neural networks simultaneously.

Making substitution

F (x|m) = F (x|0)G(x|m,φm), m ∈M (21)

in (4), we introduce a modified mixture of densities

P (x) =
∑

m∈M
F (x|0)G(x|m, φm)f(m) (22)

where
F (x|0) =

∏

n∈N
fn(xn|0) (23)

is a nonzero “background” probability density usually defined as a product of marginals,
i.e. fn(xn|0) = Pn(xn). The component functions G(x|m,φm) include additional binary
structural parameters φmn ∈ {0, 1}:

G(x|m,φm) =
∏

n∈N

[
fn(xn|m)

fn(xn|0)

]φmn

, φm = (φm1, . . . , φmN) ∈ {0, 1}N . (24)
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We can see that, by setting the structural parameter φmn = 0, any component-specific
density function fn(xn|m) can be substituted by the respective univariate background
density fn(xn|0), i.e.

F (x|m) =
∏

n∈N
fn(xn|m)φmnfn(xn|0)1−φmn . (25)

In this way the component functions G(x|m,φm) may be defined on different subspaces
and the complexity and “structure” of the finite mixture (22) can be controlled by means
of the binary parameters φmn. Simultaneously, the number of involved parameters is
reduced whenever φmn = 0 and therefore the structured (incompletely interconnected)
model would be less susceptible to possible “overfitting”.

It is an important aspect of the model (22) that the background probability density
F (x|0) cancels in the formula (6)

f(m|x) =
G(x|m,φm)f(m)∑
j∈M G(x|j, φj)f(j)

(26)

and therefore the computation may be confined only to the relevant variables. For the
same reason the input connections of a single neuron can be confined to any subset of
variables (neurons) by means of the binary parameters φmn, as it will be shown in Sec.7.

According to our best knowledge in literature there is only one similarly motivated
subspace approach. It can be traced back to an early paper of Watanabe (1967) (see
also e.g. Watanabe & Pakvasa, 1973, Oja, 1983) who proposed classification rule based
on projecting input data vectors into class-specific subspaces spanned by groups of basis
vectors, usually by principal components. The primary model for a class is a linear sub-
space (linear manifold) of the Euclidean pattern space and the input vector x ∈ X is
classified according to its largest projection. In view of the typical properties of sub-
space methods (a) the classification of a pattern x ∈ X is based solely on its direction
and does not depend on the magnitude of x and (b) the decision surfaces are quadratic
(cf. Prakash & Murty, 1997). The second limitation has been avoided by considering
mixtures of linear models (cf. e.g. Kohonen et al., 1979; Hinton et al., 1995; Bregler &
Omohundro, 1995; Prakash & Murty, 1997). It appears that Oja and others proposed
neural network implementation of subspace methods (cf. e.g. Oja, 1989; Oja & Koho-
nen, 1988; Prakash & Murty, 1997; Hinton et al., 1995, 1997). The subspace projection
methods are computationally advantageous but they do not provide statistically correct
decision models because they are not properly normalizable (cf. Hinton et al., 1997).

5 Estimation of Structured Models

We assume first that the structural parameters φmn are a priori known and fixed. In order
to estimate the unknown densities fn(·|m) and component weights f(m) we maximize
the unsupervised log-likelihood function (10), (cf. (21))

L =
1

|S|
∑

x∈S
log [

∑

m∈M
F (x|0)G(x|m, φm)f(m)]. (27)
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by means of EM algorithm. The related iteration equations can be rewritten as follows
(cf. (11) - (13)):

E-Step: (m ∈M, x ∈ S, t = 0, 1, 2, . . .)

q(t)(m| x) =
G(t)(x|m,φm)f (t)(m)∑
j∈M G(t)(x|j, φj)f (t)(j)

, (28)

M-Step: (m ∈M, n ∈ N )

f (t+1)(m) =
1

|S|
∑

x∈S
q(t)(m| x), (29)

f (t+1)
n (·|m) = arg max

fn(·|m)
{ 1

|S|
∑

x∈S
q(t)(m| x) log fn(x|m)}. (30)

Again, relation (30) can usually be expressed in explicit form (cf. e.g. Grim, 1996).
Following the original idea of Schlesinger (1968) (see also Grim, 1982) we can derive

the important problem-dependent iteration equations directly from the monotonous
convergence condition. Using the above notation we can write for any two finite values
L(t+1), L(t)

L(t+1) − L(t) =
1

|S|
∑

x∈S
log

P (t+1)(x)

P (t)(x)
.

We modify the last expression by adding and subtracting the term

∑

x∈S

∑

m∈M

q(t)(m| x)

|S| log

[
G(t+1)(x|m,φm)f (t+1)(m)

G(t)(x|m,φm)f (t)(m)

]

which can be shown to be finite in most cases of practical importance, e.g. for fn(·|m)
normal. (Note that f (t)(m) = 0 implies q(t)(m|x) = 0 and f (t+1)(m) = 0 in view of Eqs.
(28) and (29).) By using substitutions (28) and (29) we obtain

L(t+1) − L(t) =
∑

m∈M
f (t+1)(m) log

f (t+1)(m)

f (t)(m)
+

1

|S|
∑

x∈S

∑

m∈M
q(t)(m|x) log

q(t)(m|x)

q(t+1)(m|x)
+

(31)

+
∑

m∈M

1

|S|
∑

x∈S
q(t)(m| x) log

[
G(t+1)(x|m,φm)

G(t)(x|m,φm)

]

where the first and second terms represent the nonnegative Kullback-Leibler information
divergences (cf. e.g. Vajda, 1992) which is nonnegative for any two discrete distributions
and equals zero if and only if the two distributions are equal. Making substitution (24),
we can write

L(t+1) − L(t) = I(f (t+1)||f (t)) +
1

|S|
∑

x∈S
I(q(t)(·|x)||q(t+1)(·|x))+ (32)
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+
∑

m∈M

∑

n∈N

φmn

|S|
∑

x∈S
q(t)(m|x) log

[
f (t+1)(xn|m)

f (t)(xn|m)

]
≥ 0.

The inequality holds because the implicite relation (30) guarantees the last term in (32)
to be nonnegative, too.

Let us note that the inequality (32) implies all the most important properties of
EM algorithm (cf. Grim, 1982). First, the sequence of values {L(t)} is always nondecre-
asing with equality ocurring only at stationary points of the algorithm. If the sequence
converges then the necessary condition of convergence

lim
t→0

(L(t+1) − L(t)) = 0

implies analogous conditions for the sequences {f (t)} and {q(t)(·|x)}, i.e.

⇒ lim
t→0

||f (t+1) − f (t)|| = 0,

⇒ lim
t→0

||q(t+1)(·|x)− q(t)(·|x)|| = 0, x ∈ X .

A difficult point in application of EM algorithm is to specify the number of compo-
nents of the estimated mixture and to choose their initial parameters. According to our
practical experience this problem can be solved by successive adding of components: for
a given M we iterate the EM algorithm until reasonable convergence and then add a new
sufficiently “flat” and randomly placed component having a relatively high initial weight
(e.g. wM+1 = 0.5). Continuing computation we obtain again a monotonously converging
sequence L(t) for the new enlarged mixture. In this way there is a chance to find out
the data regions not sufficiently covered by the previous set of component densities. The
increased initial weight wM+1 helps the new component to “survive” in competition with
the old well “fitted” components. Note that, again, any interrupt of regular iterations
may disturb the monotonous convergency. The adding of components may be continued
until the weight of the new component is repeatedly suppressed despite the increased
initial value.

6 Maximum-Likelihood Structuring

Unlike the preceding section let us consider now variable structural parameters φ(t)
mn.

Consequently, we have to modify the difference in (31) as follows

L(t+1) − L(t) = I(f (t+1)||f (t)) +
1

|S|
∑

x∈S
I(q(t)(·|x)||q(t+1)(·|x))+ (33)

+
∑

m∈M

1

|S|
∑

x∈S
q(t)(m| x) log

[
G(t+1)(x|m,φ(t+1)

m )

G(t)(x|m,φ
(t)
m )

]
.

Further, introducing notation

γ(t+1)
mn =

1

|S|
∑

x∈S
q(t)(m|x) log

f (t+1)
n (xn|m)

fn(xn|0)
, (34)
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we can rearrange Eq. (33) as follows

L(t+1) − L(t) = I(f (t+1)||f (t)) +
1

|S|
∑

x∈S
I(q(t)(·|x)||q(t+1)(·|x))+

+
∑

m∈M

∑

n∈N
(φ(t+1)

mn − φ(t)
mn)γ(t+1)

mn + (35)

+
∑

m∈M

∑

n∈N

φ(t)
mn

|S|
∑

x∈S
q(t)(m|x) log

f (t+1)
n (xn|m)

f
(t)
n (xn|m)

.

Obviously, the last sum in the expression (35) is nonnegative for any parameters φ(t)
mn

by Eq. (30). The preceding sum in (35) is maximized by setting

φ(t+1)
mn =

{
1, γ(t+1)

mn > 0
0, γ(t+1)

mn ≤ 0
(36)

and it is zero if φ(t+1)
mn = φ(t)

mn for all m ∈M, n ∈ N . If the number of nonzero structural
parameters φmn is fixed (or bounded), e.g.

∑

m∈M

∑

n∈N
φmn ≤ d

then the optimal subset of nonzero parameters φ(t+1)
mn is defined by the d highest values

γ(t+1)
mn > 0.

Again, the iterative equations (28) - (30) with the additional step (34), (36) ge-
nerate a nondecreasing sequence {L(t+1)} converging to a possibly local maximum of
the log-likelihood function (27). In this sense, the corresponding parameters represent
the (locally) optimal m.-l. approximation of the unknown probability density P (x) (cf.
Grim, 1986).

Remark. Let us note that in case of discrete distributions fn(xn|m) we can write

f (t+1)
n (ξ|m) =

1

|S|f (t+1)(m)

∑

x∈S
δ(ξ, xn)q(t)(m|x)

γ(t+1)
mn = f (t+1)(m)

∑

ξ∈Xn

f (t+1)
n (ξ|m) log

f (t+1)
n (ξ|m)

fn(ξ|0)

and the structural criterion γ(t+1)
mn can be expressed in terms of Kullback-Leibler infor-

mation divergence
γ(t+1)

mn = f(m)(t+1)I(f (t+1)
n (·|m), fn(·|0)), (37)

of the conditional distribution f (t+1)
n (xn|m) with respect to the corresponding univari-

ate “background” distribution fn(xn|0). In this sense m.-l. structuring of discrete neural
networks is naturally related to the information measure (37). In view of the above
equations, the mixture P (t+1) includes only conditional densities f (t+1)

n (·|m) which are
specific and most “informative” with respect to the background marginals fn(·|0).
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In the original paper Grim (1986) the subspace approach of Sections 4 – 6 has been
applied to an artificial decision problem to classify 16-dimensional binary vectors from
two equiprobable populations ω1, ω2 described by Bernoulli mixtures. The parameters of
both mixtures (each of them with three components) were chosen randomly (cf. Grim,
1986, p. 152, Table 1). Next, two data sets Sω1 ,Sω2 were generated according to the
respective mixtures (|Sω1| = |Sω2| = 6400) and one half of each set was used to re-
estimate the original parameters (p. 153, Table 2). The remaining 3200 binary vectors
from each class were used to test the classification error independently. The theoretical
classification error for the re-estimated parameters (PE = 0.072, total number of para-
meters r = 100) was compared with the decision-making on the optimally chosen three-
dimensional subspace (PE = 0.221, r = 36) and with the structured model involving
the same number of parameters (PE = 0.139, r = 36). As it can be seen the structured
model clearly outperforms the standard feature selection method. The last result has
been still improved by optimizing the background distribution (PE = 0.111, r = 36).

The subspace approach has been applied further to recognition of hand-written sty-
lized numerals on a 32x32 binary rastr (Grim, 1986a). Again 400 numerals were used to
estimate each of the ten class-conditional distributions on the original 1024-dimensional
binary space and the remaining 400 numerals were used to test the classification per-
formance. The class-conditional distributions were approximated by finite mixtures of
the form (22) with only one component. The total number of parameters was chosen
r = 1000, i.e. less then 10% of the corresponding full model (r = 10240) based on the as-
sumption of conditional independence of variables. The classification error PE = 0.011
obtained by using independent test sets was even better than that of the full model
(PE = 0.012).

Recently, the subspace approach has been applied to feature selection from multi-
modal data (cf. Novovičová et al., 1996; Pudil et al., 1995; Grim, 1986, Remark 4.2).

7 Information Preserving Transforms

In the context of multilayer probabilistic neural networks the transformation of signals
between subsequent layers is of fundamental meaning. Let us recall that maximization
of information transmission is one of the most widely used principles in artificial neural
networks (cf. e.g. “infomax” method of Linsker, 1990). However, instead of maximizing
information transmission between the input and output variables, we make use of the
fact (cf. Grim, 1996a, Vajda & Grim, 1996) that the Shannon information I(X ,M)
about the descriptive decision problem on X

I(X ,M) = H(X )−H(X|M), (38)

H(X ) =
∑

x∈X
−P (x) log P (x), H(X|M) =

∑

m∈M
f(m)

∑

x∈X
−F (x|m) log F (x|m)

is automatically preserved by a special class of vector transforms T : X → Y , Y ⊂ RM ,

T (x) = (T 1(x),T2(x), . . . ,TM(x)) ∈ Y (39)
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and particularly by the coordinate functions

ym = Tm(x) = log f(m|x), x ∈ X , m ∈M. (40)

Here f(m|x), (cf. (6)) define the posterior distribution on M given x ∈ X . In other
words we can write

I(X ,M) = I(Y ,M) = H(Y)−H(Y|M) (41)

where H(Y), H(Y|M) are the corresponding unconditional and conditional entropies of
the transformed distributions

Q(y) = P (T−1(y)), Q(y|m) = F (T−1(y)|m).

Simultaneously, the entropy H(Y) of the transformed distribution Q(y) is minimized
on the class of all information preserving transforms.

Note that the information preserving transform actually “unifies” the points x ∈ X
with identical posterior distributions. Instead of logarithm we could use any bijective
function but the logarithmic coordinate function makes the contributions from different
input variables additive. In view of the formula (26) we can write (cf. (40))

Tm(x) = log f(m|x) = log[G(x|m,φm)f(m)]−
− log[

∑

j∈M
G(x|j, φj)f(j)], m ∈M (42)

and further, making substitution (24), we obtain

ym = Tm(x) = log f(m) +
∑

n∈N
φmn log

fn(xn|m)

fn(xn|0)
− log[

∑

j∈M
G(x|j, φj)f(j)]. (43)

It is obvious that the inputs of the function Tm(x) (corresponding to the m-th neuron)
can be confined to an arbitrary subset of variables xn by means of the binary structural
parameters φmn. As the optimal choice of these structural parameters can also be inclu-
ded into the EM algorithm (cf. (34), (36)), we can speak about maximum-likelihood
structuring of neural networks.

Let us recall that, as it could be supposed in view of Eq. (7), the transform T
preserves the original decision information I(X , Ω), too (cf. Grim, 1996a). Thus, we can
write I(X , Ω) = I(Y , Ω) in analogy with (41). Simultaneously the information preserving
transform minimizes the entropy of the output space Y and therefore it may be expected
to simplify the underlying statistical decision problem.

In view of these arguments the repeated application of the procedure including es-
timation and information preserving transformation of the descriptive decision problem
{X , F (·|m)f(m),m ∈ M} appears to be a reasonable method for a sequential design
of multilayer optimally structured feedforward neural networks. In this sense the infor-
mation preserving transform correspond to one layer of neural network.

A hidden layer of the probabilistic neural network transforms the descriptive deci-
sion problem without information loss. A multilayer feedforward neural network can be
designed sequentially by repeated application of a procedure including (a) unsupervised
m.-l. estimation of the descriptive distribution mixture and (b) information preserving
transform of the descriptive decision problem.
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8 Neurophysiological Aspects

Since very beginnings the research of neural networks is motivated by wonderful per-
formance of biological neural networks like e.g. mammalian central nervous system. On
the other hand, its elementary units - neurons are known to be relatively unreliable
and inaccurate. For this reason it is assumed that the excellent properties of nervous
systems have to be based on some very efficient and robust principles. From this point of
view, one of the most interesting results of the present paper is the possibility to design
generally structured neural networks and to obtain theoretical interpretation of some
basic properties of neurons in the framework of a general statistical decision problem in
a mathematically correct way - without making some arbitrary heuristical assumptions.

Let us recall that, in the present paper, we actually apply method of mixtures to a
statistical decision problem. The transformation of signals between layers is information
preserving and the final decision-making is based on Bayes formula. The idea of shared
components and the use of logarithmic coordinate function are the only arbitrary steps
motivated by neural networks. In view of these facts the possibility of neurophysiological
interpretation of the information preserving transform is a strong argument for the
proposed structural approach to be helpful to better understanding of biological neural
systems.

From the neurophysiological point of view the probability f(m|x) can be naturally
interpreted as a measure of excitation or probability of firing of the m-th neuron given the
input pattern x ∈ X . The output signal of the m-th neuron ym is defined as logarithm
of the excitation f(m|x) and therefore logarithm plays the role of activation function
or response curve.

Making use of Eq. (22) we can rewrite the formula (43) as follows

ym = Tm(x) = log f(m) +
∑

n∈N
φmn log

fn(xn|m)

fn(xn|0)
− log[P (x)/

∏

n∈N
Pn(xn)]. (44)

Consequently, we may assume the first term in (44) to be responsible for spontaneous
activity of the m-th neuron. This is well compatible with the EM algorithm which
computes a priori probability f(m) of “firing” of the m-th neuron by Eq. (29) as a mean
value of f(m|x), i.e. as a mean excitation.

The second term in Eq. (44) summarizes the contributions of the connected input
neurons (φmn = 1). In this sense, the term

log
fn(xn|m)

fn(xn|0)
= log fn(xn|m)− log fn(xn|0) (45)

can be viewed as the current synaptic weight of the n-th neuron at input of the m-th
neuron - as a function of the input value xn. Let us note that the “synaptic weight” in
the formula (45) depends on the probability fn(xn|m) and not directly on the variable
xn, i.e. it is defined as a composite function of xn.

The effectiveness of the synaptic transmission, as expressed by the formula (45),
combines the statistical properties of the input variable xn with the activity of the
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“postsynaptic” neuron “m”. In words, the synaptic weight (45) is high when the input
signal xn frequently takes part in excitation of the m-th neuron and, in turn, it is low
when the input signal xn usually doesn’t contribute to the excitation of the m-th neuron.
This formulation resembles the classical Hebb’s postulate of learning (cf. Hebb, 1949,
p.62):

When an axon of cell A is near enough to excite a cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic changes take place in one or
both cells such that A’s efficiency as one of the cells firing B, is increased.

The structural optimization of Sec.8 seems to have no efficient counterpart in bio-
logical neural systems. The structure of interconnections of biological neural networks
can be assumed to be given and essentially fixed. The adaptive properties of neural
systems are mainly enabled by the plasticity of existing synapses. This type of learning
corresponds to the otimization of structured networks of Sec.7. On the other hand, the
structural properties of biological neural systems has been optimized probably during
the long process of phylogenetic evolution. From this point of view the structural opti-
mization proposed in Sec.8 can be viewed as a short-cut alternative to obtain practical
solutions of high quality.

Let us recall further that the norming included in computation of f(m|x) corresponds
well with the competitive behaviour of neuron assemblies. The last term in (44) includes
the norming coefficient responsible for competitive properties of neurons and therefore it
can be interpreted as a cumulative effect of lateral inhibition. This term is identical for
all neurons and therefore, at the highest level, the classification tasks are not influenced
by its accuracy.

Let us also note that mathematical expectation of the last “norming” term can be
expressed by means of information-divergence

I(P (·)||F (·|0)) = EP{log[P (x)/
∏

n∈N
Pn(xn)]} (46)

which can be viewed as a measure of dependence of the involved variables. For indepen-
dent variables the expression (46) is zero.

9 CONCLUDING REMARKS

In the present paper we propose a consistent probabilistic approach to optimize mul-
tilayer neural network structures. The method is based on repeated application of a
procedure including (a) unsupervised m.-l. estimation of so called descriptive distribu-
tion mixture and (b) information preserving transformation of the descriptive decision
problem. Only the last decision-oriented layer is assumed to be estimated in a super-
vised way. The structure of the network is optimized by m.-l. estimating the involved
structural parameters. An application of the proposed method to recognition of binari-
zed nonstylized numerals will be subject of a forthcoming paper.

Throughout the paper the optimization techniques are based exclusively on EM
algorithm. Though all the design problems are posed in off-line form, there is a strai-
ghtforward connection to learning procedures via sequential modifications of the EM
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algorithm (cf. e.g. Titterington et al., 1994). Let us remark in this connection that the
assumed measure of excitation of the m-th neuron f(m|x) plays a central role in the
EM algorithm.

Let us recall finally that, by expanding the components of the information preserving
transform, we obtained terms which may correspond to some basic functional properties
of neurons like spontaneous activity, adaptivity of synaptic weights, Hebbian learning
and lateral inhibition. In this sense the probabilistic neural networks could contribute
to better understanding of biological neural systems.
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[19] Novovičová, J., Pudil, P., & Kittler, J. (1996). Divergence based feature selection for
multimodal class densities. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 18, 2, 218-223.

[20] Oja, E. (1983). Subspace Methods of Pattern Recognition. Letchworth, U.K.: Re-
search Studies Press, 1983.

[21] Oja, E. (1989). Neural networks, principal components and subspaces. International
Journal of Neural Systems, 1, 61-68.

[22] Oja, E., & Kohonen, T. (1988). The subspace learning algorithm as a formalism for
pattern recognition and neural networks. In Proceeding 1988 IEEE International
Conference on Neural Networks (pp. 277-284). San Diego, CA.

[23] Parzen, E. (1962). On estimation of a probability density function and its mode.
Annals of Mathematical Statistics, 33, 1065-1076.

17



[24] Pearson C. (1894). Contributions to the mathematical theory of evolution. 1. Dis-
section of frequency curves. Philosophical Transactions of the Royal Society of Lon-
don 185, 71-110.

[25] Poggio, T., & Girosi, F. (1990). Networks for approximation and learning. Procee-
dings of the IEEE, 78, 1481-1497.

[26] Powell, M.J.D. (1992), The theory of radial basis function approximation. In Advan-
ces in Numerical Analysis II. Oxford: Clarendon Press.

[27] Prakash, M., & Murty, M.N. (1997). Growing subspace pattern recognition methods
and their neural-network models. IEEE Transactions on Neural Networks, 8, 161-
168.
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